OSSTET- Mock Test, PYQS , Note, E-Books Get Now In App

Tech Of World

Download App

Click Here

- YouTube- Click Here
- Telegram- Click Here
- Facebook- Click Here

B - SECTION - III

SCIENCE (PCM)

CHEMISTRY

- 61. The mineral of iron is
 - Malachite (A)
 - (B) Cassiterite
 - (C) Magnetite
 - Techofworld.In(C) (D) Pyrolusite
- 62. The solubility product constant expression for

$$Ag_3 PO_4 \implies 3A_g^+ + PO_4^{3-}$$
 is

(A)
$$K_{sp} = [Ag^+][PO_4^{3-}]$$

$$(B)$$
 $K_{sp} = [Ag^+][PO_4^{3-}]^3$

(C)
$$K_{sp} = [3Ag^+]^3 [PO_4^{3-}]$$

(D)
$$K_{sp} = 3 [Ag^+] [PO_4^{3-}]$$

- Among following reactions, an example of calcination process is
 - (A) FeO + SiO₂ \rightarrow FeSiO₃
 - (B) $\operatorname{Fe}_{2} \operatorname{O}_{3} + 3\operatorname{C} \rightarrow 2\operatorname{Fe} + 3\operatorname{CO}$
 - (C) $2ZnS + 3O_2 \rightarrow 2ZnO +$

Techofworld In 2802

- (D) $MgCO_3 \rightarrow MgO + CO_2$
- The IUPAC name of Br NO_2 O CH3-CH-CH-CH-CH-is
 - 3-Bromo-2-Nitro butanoic acid
 - 3-Nitro-2-Bromo butanoic (B)
 - 4-Bromo-3-Nitro butanoic (C) acid
 - 1-Carboxy-2-Nitro-3-Bromo (D)propane

- small drop of liquid 65. spherical in shape due to
 - (A) low viscosity
 - (B) surface tension
 - hydrogen-bonding
 - (D) low density
- According to VSEPR theory, the 66. shape of XeF₄ molecule is
 - Octahedral (A)
 - (B) Square planar
 - (C) Linear
 - (D) Tetrahedral
- 67. The alkane obtained by the electrolysis of aqueous solution concentrated sodium acetate is
 - CH_⊿ (A)
 - (B) $CH_3CH_2CH_3$
 - (C) CH₃CH₂CH₂CH₃
 - (D) CH₃CH₃
- The reaction between HCl and 68. Na₂CO₃ is represented by the equation

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$$

If 25 ml of 0.05 N Na₂CO₃ solution is neutralized by 50 ml of HCl, the concentration of HCl is

- (A) 0.01 N
- (B) 0.025 N
- (C) 0·1 N
- (D)0.05 N

- The oxidation number of an 69. element in a compound evaluated on the basis certain rules. Which of the following rules is not correct in this respect?
 - (A)Oxidation number of. hydrogen is always + 1
 - Algebraic sum of oxidation (B)number of all elements in the compound is zero
 - An element in the free or (C) uncombined state has zero oxidation number
 - In all compounds oxidation number of fluorine is - 1
- 70. Among the species H₃O⁺, NH_3 , BeH_2 , BCl_3 , the central atom of one that undergoes sp²-hybridisation is
 - (A) $^{\circ}$ H $_3$ O $^+$ (B) BCl $_3$
 - (C)
 - NH₃ (D) BeH₂
- The correct order of electron 71. affinity among halogens is
 - F > Cl > Br > I(A)
 - (B) C1 < F > Br > I
 - (C) C1 > F > Br > I
 - (D) F > Br > Cl > I
- 72. The volume of a gas increases from 150 ml to 450 ml on original the If heating. temperature of the gas is 300 K, up to what temperature the gas has been heated?
 - 300 K (A)
- 600 K (B)
- (C) 450 K
- 900 K (\mathcal{D})

- which two 73. The reaction in compounds exchange their ions to form two new compounds is an example of
 - displacement reaction (A)
 - combination reaction (B)
 - displacement (C) double reaction
 - (D) redox reaction
- Arrange the following species **74**. from left to right in the increasing order of their ionic radii.

$$Na^{+}$$
, F⁻, Mg^{2+} , O^{2-} .

- (A) $F^- < Mg^{2+} < Na^+ < O^{2-}$
- $_{N}(B) Mg^{2+} < Na^{+} < F^{-} < O^{2-}$
- (C) $Na^+ < O^{2-} < F^- < Mg^{2+}$
- (D) $Mg^{2+} < Na^{+} < O^{2-} < F^{-}$
- 75. The correct order of stability of the carbocations

II. $(CH_3)_3C^+$ Techofworld.In

III. $CH_3 - CH_2^+$ and

IV. (CH₃)₂ CH is

- 4A) I > III > IV > II
 - II > III > IV > I
 - (C) I > IV > II > III
 - (D) II > IV > III > I

XX (P-I)-01 632**4**1

[25]

(Turn over)

OSSTET-P-I/19 SET - D

76. The arrangement of the following in the increasing order of their masses is

32

- I. 1.5 mole of O_2
- II. 0.5 g atom of oxygen
- III. 3.01 × 10²³ molecules of oxygen Techofworld.In
- IV. 5.6 litres of CO₂ at STP.
- (A) II < I < IV < III
- (B) IV < II < III < I
- (C) II < IV < III < I
- (D) I < II < III < IV.
- 77. Which set of quantum numbers correctly defines one electron in an atomic orbital with n = 2, l = 0?

(A)
$$n=2$$
 $l=0$ $m=0$ $s=+1$

(B)
$$n = 2$$
 $l = 0$ $m = 0$ $s = +\frac{1}{2}$

(C)
$$n=2$$
 $l=0$ $m=1$ $s=+\frac{1}{2}$

(D)
$$n=2$$
 $l=0$ $m=1$ $s=-\frac{1}{2}$

78. The product(s) obtained by the reaction of chlorobenzene with Cl₂ in presence of FeCl₃ is (are)

(A)
$$CI$$

(B) CI

(C) CI

(D) CI

- 79. Which of the following rules explains the presence of maximum number of unpaired electrons in a given subshell?
 - (A) Octet rule
 - (B) Pauli's exclusion principle
 - (C) Hund's rule
 - _(D) Aufbau principle
- 80. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ At equilibrium, if the pressure is increased at constant temperature, there will be an increase in number of molecules of
 - (A) $N_2(g)$ only
 - (B) $H_2(g)$ only
 - $\sqrt{(C)}$ NH₃(g) only
 - (D) both $N_2(g)$ and $H_2(g)$