18. The inner and outer radii of a 7 m long hollow iron right circular cylindrical pipe are 2 cm and 4 cm respectively. If $1000 \mathrm{~cm}^{3}$ of iron weighs 5 kg , what is the weight of the pipe?

264 kg
132 kg
396 kg
None of the above

Answer (b)

Volume of the iron rod = External volume - Internal volume
$=700 \times \pi\left(4^{2}-2^{2}\right) \mathrm{cm}^{3}$
$=\left(700 \times 22 \times 12 \mathrm{~cm}^{3}\right) / 7$
$=26400 \mathrm{~cm}^{3}$
$=26.4 \times 5 \mathrm{~kg}=132 \mathrm{~kg}$
19. A container is in the form of a right circular cylinder surmounted by a hemisphere of the same radius 15 cm as the cylinder. If the volume of the container is $32400 \pi \mathrm{~cm}^{3}$, then the height h of the container satisfies which one of the following?
$135 \mathrm{~cm}<\mathrm{h}<150 \mathrm{~cm}$
$140 \mathrm{~cm}<\mathrm{h}<147 \mathrm{~cm}$
$145 \mathrm{~cm}<\mathrm{h}<148 \mathrm{~cm}$
$139 \mathrm{~cm}<\mathrm{h}<145 \mathrm{~cm}$

Answer (a)

Volume of the container
$=$ Volume of the cylinder + Volume of the hemisphere
$\Rightarrow \pi 15^{2} \mathrm{~h}+\left(2 \pi 15^{3}\right) / 3=32400 \pi$
$\Rightarrow \pi 15^{2}(\mathrm{~h}+10)=32400 \pi$
$\Rightarrow \mathrm{h}+10=32400 / 225=144$
$\Rightarrow \mathrm{h}=134$
\therefore the height of the container $=134+15=149 \mathrm{~cm}$
Which satisfies $139 \mathrm{~cm}<\mathrm{h}<145 \mathrm{~cm}$.
20. A cylindrical can of internal diameter 24 cm contains water. A solid sphere of radius 6 cm is completely immersed in water in the cylinder. The water level increases by
0.25 cm
0.5 cm

2 cm
3 cm

Answer (c)

Volume of water increased = Volume of the solid sphere
$=\left(4 \pi 6^{3}\right) / 3=288 \pi \mathrm{~cm}^{3}$
If the increase in water level is hcm , then
$\pi 12^{2} \mathrm{~h}=288 \pi$
$\Rightarrow \mathrm{h}=2 \mathrm{~cm}$.
21. From a cylindrical log whose height is equal to its diameter, the greatest possible sphere has been taken out. What is the fraction of the original log which is cut away?

1/2
1/3
1/4
2/3
Answer (d)
Volume of the cylindrical log
$=\pi r^{2} h$ where $h=2 r$
$=\pi r^{2} 2 r=2 \pi r^{3}$
The radius of the greatest possible sphere $=r$
Therefore, the volume of this sphere $=\left(4 \pi r^{3}\right) / 3$
\Rightarrow this volume is $\left(4 \pi r^{3}\right) / 3 \div 2 \pi r^{3}=2 / 3$ of the volume of the cylindrical log
22. A cylindrical vessel of base radius 14 cm is filled with water to some height. If a rectangular solid of dimensions $22 \mathrm{~cm} \times 7 \mathrm{~cm} \times 5 \mathrm{~cm}$ is immersed in it, what is the rise in water level?
0.5 cm
1.0 cm
1.25 cm
1.5 cm

Answer (c)
Volume of the rise of water in the cylindrical vessel = volume of the rectangular solid immersed
If h is the rise in water level
$\pi 14^{2} \mathrm{~h}=(22 \times 7 \times 5) \mathrm{cm}^{3}$
$\Rightarrow \mathrm{h}=22 \times 7 \times 5 / \pi .14 \times 14 \mathrm{~cm}$
$\Rightarrow \mathrm{h}=770 / 196 \pi=(770 \times 7) / 196 \times 22=1.25 \mathrm{~cm}$
23. A lead pencil is in the shape of a cylinder. The pencil is 21 cm long with radius 0.4 cm and its lead is of radius 0.1 cm . What is the volume of wood in the pencil?
$9 \mathrm{~cm}^{3}$
$9.4 \mathrm{~cm}^{3}$
$9.9 \mathrm{~cm}^{3}$
$10.1 \mathrm{~cm}^{3}$
Answer (c)
Volume of the wood
= volume of the pencil - volume of the lead
$=\left[\pi(0.4)^{2} 21-\pi(0.1)^{2} \times 21\right] \mathrm{cm}^{3}$
$=\pi \times 21(0.16-0.01) \mathrm{cm}^{3}$
$=66 \times 0.15 \mathrm{~cm}^{3}=9.9 \mathrm{~cm}^{3}$
24. A hollow cylindrical iron pipe of length 1.4 m has bore radius 2.5 cm and thickness of the metal is 1 cm . What is the volume of the iron used in the pipe?
$2640 \mathrm{~cm}^{3}$
$2604 \mathrm{~cm}^{3}$
$2460 \mathrm{~cm}^{3}$
None of the above

Answer (a)

Length of the pipe $=140 \mathrm{~cm}$
Internal radius $=2.5 \mathrm{~cm}$
External radius $=3.5 \mathrm{~cm}$
Volume of the pipe
$=\pi(3.5 \times 3.5-2.5 \times 2.5) \times 140 \mathrm{~cm}^{3}$
$=2640 \mathrm{~cm}^{3}$

