12. Assume the Earth to be a sphere of radius R. What is the radius of the circle of latitude $40^{\circ} \mathrm{S}$?
$R \cos 40^{\circ}$
$R \sin 80^{\circ}$
$R \sin 40^{\circ}$
$R \tan 40^{\circ}$
Answer (a)

In the diagram above $O R(=O Q)$ is the radius of the earth at the equator, $P Q$ is the radius of the earth at 40° latitude and OP is the distance on axis of earth between the two points.
In the triangle OPQ
angle Q is 40° (alternate angles in a set of parallel lines)
$\cos 40^{\circ}=\mathrm{PQ} / \mathrm{OQ}$ (Adjacent side/hypotenuse)
$\therefore \mathrm{PQ}=\mathrm{OQ} \cos 40^{\circ}$ or $\mathrm{PQ}=\mathrm{OR} \cos 40^{\circ}($ since $\mathrm{OR}=\mathrm{OQ})$
Therefore radius of the earth at 40° latitude $=$ Radius at equator $\mathrm{x} \cos 40^{\circ}$
13. What is the volume (in cm^{3}) of a spherical shell with 8 cm and 10 cm as its internal and external diameters respectively?
$61 \pi / 3$
$122 \pi / 3$
$244 \pi / 3$
$250 \pi / 3$

Answer (c)

A spherical shell is the region between two concentric spheres of differing radii. Diameter of 10 and 8 means radii of 5 and 4 respectively

14. The volume of a sphere is 8 times that of another sphere. What is the ratio of their surface areas?

8:1
4:1
2:1
4:3

Answer (b)

We know that if volume ratio of two spheres is $8: 1$, then the ratio of their radii is 2:1. (Refer Q.9)
Therefore ratio of their surface areas $=4 \pi 2^{2}: 4 \pi 1^{2}=4: 1$
15. A sphere and a cube have same surface area. What is the ratio of the square of volume of the sphere to the square of volume of the cube?
$\pi: 6$
$1: 1$
$6: \pi$
$3: \pi$

Answer (c)

$4 \pi r^{2}=6 a^{2}=>r^{2}=3 a^{2} / 2 \pi$ Therefore
$\left[\frac{\left(4 \pi r^{3}\right)}{3}\right]^{2}:\left(a^{3}\right)^{2}$
$\Rightarrow \frac{16 \pi^{2} r^{6}}{9}: a^{6}$

$$
\Rightarrow \frac{16 \pi^{2} 27 a^{6}}{9 \times 8 \pi^{3}}: a^{6} \text { (substituting the value of } r^{2} \text { from above) }
$$

 6
 \Rightarrow
: 1 or $6: \pi$
16. If a sphere of radius 10 cm is intersected by a plane at a distance 8 cm from its centre, what is the radius of the curve of intersection of the plane and the sphere?

8 cm
6 cm
5 cm
4 cm
Answer (b)

From the figure the radius of the curve $=\sqrt{ }\left(10^{2}-8^{2}\right)=\sqrt{ } 6^{2}=6 \mathrm{~cm}$
17. If the number of square centimeters on the surface area of a sphere is three times the number of cubic centimeters in its volume, then what is its diameter?

1 cm
2 cm
3 cm
6 cm
Answer (b) If r be the radius, then surface area $=4 \pi r^{2}$ and volume $=4 \pi r^{3} / 3$
From the question $4 \pi r^{2}=3 \times 4 \pi r^{3} / 3$
$\Rightarrow \mathrm{r}^{2}=\mathrm{r}^{3}$ or $\mathrm{r}=1 \mathrm{~cm}$
\therefore diameter $=2 \mathrm{~cm}$.
18. A sphere is cut into two equal halves and both the halves are painted from all the sides. The radius of the sphere is r units and the rate of painting is Rs 8 per sq . unit. What is the total cost of painting the two halves of the sphere in rupees?
$6 \pi r^{2}$
$32 \pi r^{2}$
$48 \pi \mathrm{r}^{2}$
Insufficient data to answer
Answer (c)
Curved surface area of the sphere $=4 \pi r^{2}$
Flat surface areas of two hemispheres $=2 \times \pi r^{2}$
Total surface area $=6 \pi r^{2}$
Therefore, total cost $=$ Rs $8 \times 6 \pi r^{2}$
$=$ Rs $48 \pi \mathrm{r}^{2}$

