11. ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$. Let BC be produced to D . From a point E on the line $A C$ let $E F$ be a straight line such that $E F$ is parallel to $A B$. Consider the quadrilateral ECDF thus formed. If angle $\mathrm{ABC}=65^{\circ}$ and angle $\mathrm{EFD}=80^{\circ}$, then what is angle FDC equal to?
42°
41°
37°
35°
Answer (d)

$\angle A B C=\angle A C B=65^{\circ}$ (since $A B=A C$)
Therefore, $\angle \mathrm{ACD}=180^{\circ}-65^{\circ}=115^{\circ}$
$\angle \mathrm{A}=180^{\circ}-\left(65^{\circ}+65^{\circ}\right)=180^{\circ}-130^{\circ}=50^{\circ}$
Therefore $\angle \mathrm{A}=\angle \mathrm{GEC}=50^{\circ}$ (since FG is parallel to AB)
Therefore, $\angle \mathrm{FEC}=180^{\circ}-50^{\circ}=130^{\circ}$
In quadrilateral ECDF, sum of the angles is 360°
Therefore $x=360^{\circ}-\left(80^{\circ}+130^{\circ}+115^{\circ}\right)=35^{\circ}$.
12. The quadrilateral formed by joining the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ of a quadrilateral $A B C D$ is
a trapezium but not a parallelogram
a quadrilateral but not a trapezium
a parallelogram only
a rhombus
Answer (c)

A quadrilateral formed by joining the mid-points of the sides is a parallelogram only. (See the adjoining diagram.)

In the figure given above, a circle is inscribed in a quadrilateral ABCD . Given that $\mathrm{BC}=38 \mathrm{~cm}, \mathrm{QB}=27 \mathrm{~cm}, \mathrm{DC}=25 \mathrm{~cm}$ and AD is perpendicular to DC . What is the radius of the circle?

11 cm
14 cm
15 cm
16 cm

Answer (b)

We know that two tangents to a circle from a point outside the circle are equal Hence, $\mathrm{QB}=\mathrm{BR}=27 \mathrm{~cm}$, thus $\mathrm{RC}=38-27=11 \mathrm{~cm}$
Also $\mathrm{RC}=\mathrm{SC}=11 \mathrm{~cm}$, thus $\mathrm{DS}=\mathrm{DP}=25-11=14 \mathrm{~cm}$
$\angle \mathrm{OPD}=\angle \mathrm{OSD}=90^{\circ}$ (angle formed by a tangent with the radius of a circle)
Thus POSD is a square with sides equal to 14 cm .

14. ABCD is a concyclic quadrilateral. The tangents at A and C intersect each other at P. If angle $A B C=100^{\circ}$, then what is angle APC equal to?
10°
20°
30°
40°
Answer (b)

$\angle A O C=2 \angle A B C=2 \times 100=200^{\circ}$ (external)
$\angle A O C$ (internal side) $=360^{\circ}-200^{\circ}=160^{\circ}$
$\angle \mathrm{OAP}=\angle \mathrm{OCP}=90^{\circ}$ (angle of the tangent with the radius)
Therefore, in the quadrilateral $\mathrm{AOCP}, \angle \mathrm{APC}=360^{\circ}-\left(160^{\circ}+90^{\circ}+90^{\circ}\right)=20^{\circ}$

In the figure given above, O is the centre of a circle circumscribing a quadrilateral $A B C D$. If $A B=B C$ and angle $B A C=40^{\circ}$, then what is angle $A D C$ equal to?
50°
60°
70°
80°
Answer (d)
$\mathrm{AB}=\mathrm{BC}=>\angle \mathrm{BAC}=\angle \mathrm{BCA}=40^{\circ}$
Therefore $\angle A B C=100^{\circ}$
Now $\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$ (sum of opposite angles of a quadrilateral is equal to 180°)
Therefore $\angle \mathrm{ADC}=180^{\circ}-100^{\circ}=80^{\circ}$

