11. From a point P which is at a distance of 13 cm from centre O of a circle of radius 5 cm , in the same plane, a pair of tangents $P Q$ and $P R$ are drawn to the circle. Area of quadrilateral PQOR is

65 sq cm
60 sq cm
30 sq cm
90 sq cm
Answer (b). $\mathrm{OP}=13 \mathrm{~cm}$ and $\mathrm{OR}=\mathrm{OQ}=5 \mathrm{~cm} \ldots$...given
Angle ORP and OQP $=90^{\circ} \ldots$ radius is perpendicular to a tangent at the point of incidence.
Applying Pythagoras PR and $\mathrm{PQ}=12 \mathrm{~cm}$.
Area of each triangle $=(5 \times 12) / 2=30 \mathrm{sq} \mathrm{cm}$.

Thus area of quadrilateral $=60 \mathrm{sq} \mathrm{cm}$.

12. The diameters of two circles are the side of a square and the diagonal of the square. The ratio of the areas of the smaller circle and the larger circle is
$\sqrt{ } 2: \sqrt{ } 3$
$1: \sqrt{ } 2$
1:2
$1: 4$
Answer (c). Let the side of the square be 1 unit. The diagonal of the square would be $\sqrt{ } 2$ units. (since area of a square is given by side ${ }^{2}$ or diagonal ${ }^{2} / 2$.)
Radius of smaller circle $=1 / 2$ unit and its area $=\pi / 4$
Radius of greater circle $1 / \sqrt{ } 2$ and its area $\pi / 2$
The ratio of areas is $1 / 4: 1 / 2$ or $1: 2$.
13. N is the foot of $\mathrm{t} \backslash$ he perpendicular from a point P of a circle with radius 7 cm , on a diameter AB of the circle. If the length of the chord PB is 12 cm , the distance of the point N from the point B is
$3 \mathrm{~s} / 7 \mathrm{~cm}$
$102 / 7 \mathrm{~cm}$
$65 / 7 \mathrm{~cm}$
$122 / 7 \mathrm{~cm}$
Answer (b). In the right triangle APB, AP can be found out using Pythagoras which comes to $\sqrt{ } 52$.
In triangle PNB, $\mathrm{PN}^{2}=\mathrm{PB}^{2}-\mathrm{NB}^{2}$
$=\mathrm{PB}^{2}-(14-\mathrm{AN})^{2}$
$\ldots .1$
In triangle ANP, $\mathrm{PN}^{2}=\mathrm{AP}^{2}-\mathrm{AN}^{2} \ldots . .2$
Equating (1) and (2), $\mathrm{PB}^{2}-(14-\mathrm{AN})^{2}=\mathrm{AP}^{2}-\mathrm{AN}^{2}$
$144-196-\mathrm{AN}^{2}+28 \mathrm{AN}=(\sqrt{ } 52)^{2}-\mathrm{AN}^{2}$
AN $=35 / 7$

14. A,B.C,D are four points on a circle,AC and BD intersect at a point E such that angle $\mathrm{BEC}=130^{\circ}$ and $E C D=20^{\circ}$. Angle BAC is
100°
110°
120°
90°
Answer (b). In triangle ECD,
angle $E C D=20^{\circ}$
angle CED $=50^{\circ}\left(180^{\circ}-130^{\circ}=50^{\circ}\right)$
Therefore angle EDC $=110^{\circ}$.
Angle BAC is also $=110^{\circ}$ (since angles subtended in the same segment are equal.)

15. The radius of a circle is a side of a square. The ratio of the areas of the circle and the square is
$\pi: 2$
$2: \pi$
$1: \pi$
7: 1
Answer (d). Let the side of the square be 1 unit
Area of the square $=1 \mathrm{sq}$ unit.
Area of the circle $=\pi \times 1^{2}=\pi$ sq units.
The required ratio $=\pi: 1$.

