1. For a triangle $A B C, D$ and E are two points on $A B$ and $A C$ such that $A D={ }^{1} / 4 A B, A E$ $=1 / 4 \mathrm{AC}$. If $\mathrm{BC}=12 \mathrm{~cm}$ then DE is :

3 cm
6 cm
5 cm
4 cm
Answer (a). X and Y are mid points of AB and BC respectively.
As per mid-point theorem $\mathrm{XY}=\mathrm{BC} / 2$ or 6 cm .
Similarly, in triangle AXY, D and E are mid-points of AX and AY respectively.
Therefore, as per mid-point theorem $\mathrm{DE}=\mathrm{XY} / 2=3 \mathrm{~cm}$.

2. In an acute angled triangle $A B C$, if $\sin 2(A+B-C)=1$ and $\tan (B+C-A)=\sqrt{ } 3$, then the value of angle B is
60°
30°
5212°
6712°

Answer (c). $\sin 2(A+B-C)=1$
$2(A+B-C)=90^{\circ}\left(\right.$ since $\left.\sin 90^{\circ}=1\right)$
$\mathrm{A}+\mathrm{B}-\mathrm{C}=45^{\circ}$
$\tan (B+C-A)=\sqrt{ } 3$
$B+C-A=60^{\circ}\left(\right.$ since $\left.\tan 60^{\circ}=\sqrt{ } 3\right)$
Adding (1) and (2) $\mathrm{A}+\mathrm{B}-\mathrm{C}+\mathrm{B}+\mathrm{C}-\mathrm{A}=45^{\circ}+60^{\circ}=105^{\circ}$
2B $=105^{\circ}$
B $=521 / 2^{\circ}$
3. If the in radius of a triangle with perimeter 32 cm is 6 cm , then the area of the triangle in sq. cm is

48
100
64
96
Answer (d).
Area of the triangle $=$ in radius x semi-perimeter
Area $=6 \times 16=96$ sq. cm.
4. ABC is a right angled triangle, B being the right angle. Mid-points of $B C$ and $A C$ are respectively B' and A'. The ratio of the area of the quadrilateral AA' B'B to the area of the triangle $A B C$ is
$1: 2$
$2: 3$
3: 4
None of the above

Answer (c). Area of triangle ABC $=\mathrm{bh} / 2$
Since CB' is half of CB, area of triangle CA'B' $=\mathrm{bh} / 8$
The ratio of area of triangle $\mathrm{CA}^{\prime} \mathrm{B}^{\prime}$ to $\mathrm{ABC}=1: 4$.
Therefore, the ratio of area of quadrilateral AA'BB' to the area of triangle $\mathrm{ABC}=3$:

5. In a triangle $A B C$, the side $B C$ is extended up to D. Such that $C D=A C$, if angle BAD $=109^{\circ}$ and angle $A C B=72^{\circ}$ then the value of angle ABC is
35°
60°
40°
45°
Answer (a). Angle ACB $=72^{\circ}$, hence angle $\mathrm{ACD}=180^{\circ}-72^{\circ}=108^{\circ}$
Since CD = AC, triangle ADC is an isosceles triangle.
Therefore angles CAD and CDA are both equal to $72^{\circ} / 2=36^{\circ}$.
But angle $B A D=109^{\circ}$, hence angle $B A C=109^{\circ}-36^{\circ}=73^{\circ}$

Finally angle $\mathrm{ABC}=180^{\circ}-\left(73^{\circ}+72^{\circ}\right)=35^{\circ}$

6. Side $B C$ of triangle ABC is produced to D . If angle $\mathrm{ACD}=140^{\circ}$ and angle $\mathrm{ABC}=$ 3 BAC, then find angle A.
45°
55°
35°
60°
Answer (c). Exterior angle is equal to the sum of 2 opposite interior angles.
i.e. Angle A + angle B $=140^{\circ}$

Dividing 140° in the ratio $1: 3$, we get angle $A=35^{\circ}$

7. If O be the circum centre of a triangle PQR and angle $\mathrm{QOR}=110^{\circ}$, angle $\mathrm{OPR}=$ 25°, then the measure of angle PRQ is
55°
60°
65°
50°
Answer (b). Since O is the circum centre, $O P=O Q=O R$
Thus, triangle OPR is an isosceles triangle, hence angle PRO $=25^{\circ}$
Similarly, triangle OQR is also an isosceles triangle
Hence, angle ORQ $=\left(180^{\circ}-110^{\circ}\right) / 2=35^{\circ}$

Therefore, angle $\mathrm{PRQ}=35^{\circ}+25^{\circ}=60^{\circ}$

8. D and E are mid-points of $A B$ and $A C$ of triangle $A B C$. If angle $A=80^{\circ}$, angle $C=$ 35°, then angle EDB is equal to
100°
115°
120°
125°
Answer (b).Note: A line joining the mid-points of any two sides is parallel to the third side.
In triangle ADE , angle $\mathrm{E}=35^{\circ}$ (angle E and angle C are a pair of corresponding angles, hence equal)
Therefore angle $\mathrm{EDB}=80^{\circ}+35^{\circ}=115^{\circ}$ (Exterior angle is equal to the sum of two

9. In a right-angled triangle $A B C$, angle $A B C=90^{\circ}, A B=5 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$. The radius of the circum circle of the triangle $A B C$ is
6.5 cm

7 cm
7.5 cm

6 cm

Answer (a). The circumcentre of a right angled triangle is the mid-point of the hypotenuse.
In the given diagram, $\mathrm{AC}^{2}=12^{2}-5^{2}$
$\mathrm{AC}=13 \mathrm{~cm}$ which is also the diameter of circumcircle.
Therefore the radius of the circumcircle $=6.5 \mathrm{~cm}$.

10. If the circum radius of an equilateral triangle ABC be 8 cm , then the height of the triangle is

8 cm
12 cm
16 cm
6 cm
Answer (b). In an equilateral triangle, centroid and the circumcenter coincide. AD is thus the height as well as the median of the triangle. Since the centroid divides the median in the ratio $2: 1$, the height of the triangle will be 12 cm .

