1. Let $A B C D$ be a parallelogram. Let P, Q, R, S be the mid-points of sides $A B, B C, C D$, DA respectively. Consider the following statements:

Area of triangle APS < Area of triangle DSR if BD < AC.
Area of triangle $\mathrm{ABC}=4$ (Area of triangle BPQ).
Select the correct answer using the code given below:
1 only
2 only
Both 1 and 2
Neither 1 nor 2

Answer (c)

For statement 1 we can prove that area of triangle APS = area of triangle BPQ since triangles on same base and between same parallels are equal in area)
We can also see that area of triangle BPQ is equal to area of triangle DSR Therefore Statement 1 is correct.
For Statement 2 we can see that there are 4 similar triangles AOP, COQ, OPQ and BPQ inside the triangle ABS , hence statement 2 is also correct.
2. Consider the following statements:

Let ABCD be a parallelogram which is not a rectangle. Then $2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right) \neq$ $A C^{2}+B D{ }^{2}$

If $A B C D$ is a rhombus with $A B=4 \mathrm{~cm}$, then $A C{ }^{2}+B D{ }^{2}=n^{3}$ for some positive integer n.

Which of the above statements is/are correct?
1 only
2 only
Both 1 and 2
Neither 1 nor 2

Answer (c)

Consider statement 1.
$A C^{2}=(m+n)^{2}+h^{2}$
$A C{ }^{2}=m^{2}+n^{2}+2 m n+h^{2}$
$=\mathrm{m}^{2}+\left(\mathrm{n}^{2}+\mathrm{h}^{2}\right)+2 \mathrm{mn}$
$=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{mn}$
$\mathrm{BD}^{2}=(\mathrm{m}-\mathrm{n})^{2}+\mathrm{h}^{2}$
$B D^{2}=m^{2}+n^{2}-2 m n+h^{2}$
$=\mathrm{m}^{2}+\left(\mathrm{n}^{2}+\mathrm{h}^{2}\right)-2 \mathrm{mn}$
$=A B^{2}+B C^{2}-2 m n$
Adding (1) and (2)
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right)$
Statement 1 is correct.
Consider statement 2.
Using above result
$\mathrm{AC}^{2}+\mathrm{BD}^{2}=2\left(\mathrm{n}^{2}+\mathrm{n}^{2}\right)$ [since ABCD is now a rhombus]
$=4 \mathrm{x} \mathrm{n}^{2}$
If Statement 2 is correct then
$4 \mathrm{xn}^{2}=\mathrm{n}^{3}$
or $\mathrm{n}=4$
Statement 2 is also correct for $\mathrm{n}=4$.
3. $A B C D$ is a parallelogram. E is a point on $B C$ such that $B E: E C=m: n$. If $A E$ and $D B$ intersect in F, then what is the ratio of the area of triangle FEB to the area of triangle AFD?
m / n
$(\mathrm{m} / \mathrm{n})^{2}$
$(\mathrm{n} / \mathrm{m})^{2}$
$[m /(m+n)]^{2}$
Answer (d)

In two similar triangles, the ratio of their areas is the square of the ratio of their sides
Triangle FEB ~ triangle FAD
\therefore area of $\triangle \mathrm{FEB} /$ area of $\triangle \mathrm{FAD}=\mathrm{EB}^{2} / \mathrm{AD}^{2}=\mathrm{m}^{2} /(\mathrm{m}+\mathrm{n})^{2}$
$=[m / m+n]^{2}$
4. One side of a parallelogram is 8.06 cm and its perpendicular distance from opposite side is 2.08 cm . What is the approximate area of the parallelogram?
$12.56 \mathrm{~cm}^{2}$
$14.56 \mathrm{~cm}^{2}$
$16.76 \mathrm{~cm}^{2}$
$22.56 \mathrm{~cm}^{2}$
Answer (c)

Area of parallelogram $=8.06 \times 2.08 \mathrm{~cm}^{2}$
$=16.76 \mathrm{~cm}^{2}$

5. Consider the following statements :

If the diagonals of a parallelogram $A B C D$ are perpendicular, then $A B C D$ may be a rhombus.

If the diagonals of a quadrilateral $A B C D$ are equal and perpendicular, then $A B C D$ is a square.

Which of the statements given above is/are correct?
1 only
2 only
Both 1 and 2
Neither 1 nor 2

Answer (c)

The diagonals of both a rhombus and a square are perpendicular to each other, but in a square the diagonals are equal.
\therefore if the diagonals of a parallelogram $A B C D$ are perpendicular then $A B C D$ may be a rhombus or a square
and if the diagonals of a quadrilateral ABCD are equal and perpendicular, then $A B C D$ is a square.
6. $A B C D$ is a parallelogram. If the bisectors of the angle A and angle C meet the diagonal BD at points P and Q respectively, then which one of the following is correct?

PCQA is a straight line
Triangle APQ is similar to triangle PCQ
$\mathrm{AP}=\mathrm{CP}$
$A P=A Q$

Answer (b)

It can be proven that triangle ADP is congruent with triangle BCO
In triangle APQ and PCQ
$\angle A P Q=\angle C Q P$ (from statement 1)
$\mathrm{PQ}=\mathrm{PQ}$ (common side)
$\mathrm{AP}=\mathrm{CQ}$ (from statement 1)
\therefore triangle APQ is similar to triangle PCQ
7. Let ABCD be a parallelogram. Let m, n be positive integers such that $\mathrm{n}<\mathrm{m}<2 \mathrm{n}$. Let $\mathrm{AC}=2 \mathrm{mn}$ and $\mathrm{BD}=\mathrm{m}^{2}-\mathrm{n}^{2}$. Let $\mathrm{AB}=\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) / 2$.

Statement -I: AC > BD.
Statement- II: ABCD is a rhombus.
Which one of the following is correct in respect of the above statements?
Both statement-I and statement-II are true and statement-II is the correct explanation of statement-I

Both statement-I and statement-II are true but statement-II is not the correct explanation of statement-I

Statement-I is true, but statement-II is false
Statement-II is true, but statement-I is false
Answer (b)

$\mathrm{AC}=2 \mathrm{mn}$ and $\mathrm{BD}=\mathrm{m}^{2}-\mathrm{n}^{2}$ and $\mathrm{AB}=\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) / 2$
$\therefore \mathrm{AO}=\mathrm{mn}$ and $\mathrm{BO}\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right) / 2$
If ABCD is a rhombus, then
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}=(\mathrm{mn})^{2}+\left(\mathrm{m}^{2} \text { \&ndash } \mathrm{n}^{2}\right)^{2} / 2^{2}$
$\therefore \mathrm{AB}^{2}=\mathrm{m}^{2} \mathrm{n}^{2}+\mathrm{m}^{4}+\mathrm{n}^{4}-2 \mathrm{~m}^{2} \mathrm{n}^{2} / 4$
$=m^{4}+n^{4}-2 m^{2} n^{2} / 4$
$\left.=\left[(m+n)^{2} / 2\right)\right]^{2}$ which is given
But since $A C$ and $B D$ are diagonals of rhombus $A C>B D$ is true
Hence, both statements are true and statement II is correct explanation of I.
8. The sides of a parallelogram are 12 cm and 8 cm long and one of the diagonals is 10 cm long. If d is the length of other diagonal, then which one of the following is correct?
$\mathrm{d}<8 \mathrm{~cm}$
$8 \mathrm{~cm}<\mathrm{d}<10 \mathrm{~cm}$
$10 \mathrm{~cm}<\mathrm{d}<12 \mathrm{~cm}$
d $>12 \mathrm{~cm}$
Answer (d)

In triangle ABC .
$\mathrm{AC}<\mathrm{AB}+\mathrm{BC}$, hence $\mathrm{d}<12+8=20$
In triangle $\mathrm{OAB}, \mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
$\mathrm{d} / 2+5>12$
d/2 >7 or d >14
\therefore the value of d is more than 14 but less than 20
9. Let LMNP be a parallelogram and NR be perpendicular to LP. If the area of the parallelogram is six times the area of triangle $R N P$ and $R P=6 \mathrm{~cm}$, what is LR equal to?

15 cm
12 cm
9 cm
8 cm
Answer (b)

$\mathrm{LR}=\mathrm{a}, \mathrm{RN}=\mathrm{b}$
Area of parallelogram $=$ base \times height $=(a+6) \times b$
Area of triangle $=(b a s e x$ height $) / 2=6 b / 2=3 b$
From the question $(a+6) b=6 \times 3 b$
$\Rightarrow \mathrm{a}+6=18$ or $\mathrm{a}=12$

10. In the figure given above, $A B C D$ is a parallelogram. P is a point on $B C$ such that $\mathrm{PB}: \mathrm{PC}=1: 2$. DP produced meets AB produced at Q . If the area of the triangle BPQ is 20 square units, what is the area of the triangle DCP ?

20 square units
30 square units
40 square units
None of the above

Answer (d)

It can be proven that the triangles DCP and BPQ are similar since the corresponding angles are equal.
We also know that in two similar triangles, the ratio of their areas is the square of the ratio of their sides
Since BP: PC = $1: 2$, so the ratio of area of triangles BPQ and DCP would be $1: 4$ $=>$ The area of the triangle DCP is 4×20, i.e. 80 square units.

