31- If $6 \times 43-46 y 9=1904$, which of the following should come in place of $x=$?

- A. 4
- B. 6
- C. 9
- D.Cannot be determined
- E.None of these

Answer \& Explanation

Answer - E (None of these)
Explanation - $6 \times 43-46 y 9=1904$
$6 \times 43=1904+46 y 9$
$[1+y=4 \quad y=3]$
$6 \times 43=1904+4639=6543$
$[y=3]$
$x=5$
32- How many of the following numbers are divisible by 3 but not by 9 ?
2133, 2343, 3474, 4131, 5286, 5340, 6336, 7347, 8115, 9276

- A. 5
- B. 6
- C. 7
- D. 8
- E.None of these

Answer \& Explanation

Answer - B (6)
Explanation - Taking the sum of the digits, we have :
$S_{1}=9, S_{2}=12, S_{3}=18, S_{4}=9, S_{5}=21, S_{6}=12, S_{7}=18, S_{8}=21, S_{9}=15, S_{10}=24$.
Clearly, $S_{2}, S_{3}, S_{6}, S_{8}, S_{9}, S_{10}$ are all divisible by 3 but not by 9 .
So, the number of required numbers $=6$

33- The difference between the squares of two consecutive odd integers is always divisible by:

- A. 3
- B. 6
- C. 7
- D. 8
- E.None of these

Answer \& Explanation

Answer - D (8)
Explanation - Let the two consecutive odd integers be $(2 x+1)$ and $(2 x+3)$
Then, $(2 x+3)^{2}-(2 x+1)^{2}=(2 x+3+2 x+1)(2 x+3-2 x-1)=(4 x+4) \times 2$

$$
=8(x+1) \text {, which is always divisible by } 8
$$

34- The smallest value of n, for which $2 n+1$ is not a prime number, is:

- A. 3
- B. 4
- C. 5
- D. 6
- E.None of these

Answer \& Explanation

Answer - B (4)
Explanation $-(2 \times 1+1)=3,(2 \times 2+1)=5,(2 \times 3+1)=7 .(2 \times 4+1)=9$
which is not prime.
$\mathrm{n}=4$
35- What largest number of five digits is divisible by 99 ?

- A. 99909
- B. 99981
- C. 99990
- D. 99999
- E.None of these

Answer \& Explanation
Answer - C (99990)
Explanation - Largest number of 5 digits $=99999$. On dividing 99999 by 99 , we get 9 as remainder.

Required number $=(99999-9)=99990$
36- The value of 112×5^{4} is:

- A. 6700
- B. 70000
- C. 76500
- D. 77200
- E.None of these

Answer \& Explanation
Answer - B (70000)
Explanation -
$\left(112 \times 5^{4}\right)=\frac{1120000}{2^{4}}$
1120000
$=$
$\frac{}{16}=70000$.
37- If x and y are the two digits of the number $653 x y$ such that this number is divisible by 80 , then $x+y$ is equal to:

- A. 2
- B. 3
- C. 4
- D. 6
- E.None of these

Answer \& Explanation

Answer - A (2)

Explanation - Since $653 x y$ is divisible by 5 as well as 2 , so $y=0$.
Now, 653×0 must be divisible by 8 .
So, 3×0 must be divisible by 8 . This happens when $x=2$
$x+y=(2+0)=2$

38- What least number must be subtracted from 13294 so that the remainder is exactly divisible by 97 ?

- A. 1
- B. 3
- C. 4
- D. 5
- E.None of these

Answer \& Explanation

Answer - D (5)

Explanation - On dividing 13294 by 97, we get remainder $=5$.
Required number to be subtracted $=5$
39- If n is a negative number, then which of the following is the least?

- A. 0
- B.- n
- C.2n
- D.4n
- E.None of these

Answer \& Explanation

Answer - C (2n)
Explanation - $\mathrm{n}<0 \quad 2 \mathrm{n}<0,-\mathrm{n}>0$ and $\mathrm{n}^{2}>0$
Least of $2 n, 0,-n$ and n^{2} is $2 n$
40- The least number by which 72 must be multiplied in order to produce a multiple of 112 , is:

- A. 6
- B. 12
- C. 14
- D. 18
- E.None of these

Answer \& Explanation
Answer - C (14)
Explanation - Required number is divisible by 72 as well as by 112, If it is divisible by their L.C.M, which is 1008.

Now, 1008 when divided by 72 , Gives quotient $=14$.
Required number $=14$

