21- 4 men and 6 women can complete a work in 8 days, while 3 men and 7 women can complete it in 10 days. In how many days will 10 women complete it?

- A. 35 days
- B. 40 days
- C. 45 days
- D. 50 days
- E.None of these

Answer \& Explanation
Answer - B (40 days)
Explanation - Let 1 man's 1 day's work = x and 1 woman's 1 day's work = y.
Then, $4 x+6 y=\frac{1}{-}$ and $3 x+7 y=\frac{1}{10}$.

Solving the two equations, we get: $x=\frac{11}{400}, y=\frac{1}{400}$

1 woman's 1 day's work $=\frac{1}{400}$.

10 women's 1 day's work $=\frac{1}{400} \times 10=\frac{1}{40}$.
Hence, 10 women will complete the work in 40 days.
22- A and B can together finish a work 30 days. They worked together for 20 days and then B left. After another 20 days, A finished the remaining work. In how many days A alone can finish the work?

- A. 40 days
- B. 50 days
- C. 54 days
- D. 60 days
- E.None of these

Answer \& Explanation
Answer - D (60 days)
Explanation -
$(A+B)$'s 20 day's work $=\frac{1}{30} \times 20=\frac{2}{3}$.

Remaining work $=1-\frac{2}{3}=\frac{1}{3}$.

1
Now,_work is done by A in 20 days. 3

Therefore, the whole work will be done by A in $(20 \times 3)=60$ days.

23- P can complete a work in 12 days working 8 hours a day. Q can complete the same work in 8 days working 10 hours a day. If both P and Q work together, working 8 hours a day, in how many days can they complete the work?

- A. 5 5/11 days
- B. 5 6/11 days
- C. 6 5/11 days
- D. 6 6/11 days
- E.None of these

Answer \& Explanation

Answer - A (5 5/11)
Explanation - P can complete the work in (12×8) hrs. $=96$ hrs.
Q can complete the work in $(8 \times 10) \mathrm{hrs} .=80 \mathrm{hrs}$.
P's1 hour's work $=\frac{1}{96}$ and Q's 1 hour's work $=\frac{1}{80}$.

$$
(\mathrm{P}+\mathrm{Q}) \text { 's } 1 \text { hour's work }=\frac{1}{96}+\frac{1}{80}=\frac{11}{480} .
$$

So, both P and Q will finish the work in __ hrs.

Number of days of 8 hours each $=\frac{480}{11} \frac{1}{8} x_{-}^{1}=\frac{60}{11}$ days $=5 \underset{11}{5}$ days.
24-10 women can complete a work in 7 days and 10 children take 14 days to complete the work. How many days will 5 women and 10 children take to complete the work?

- A. 3 days
- B. 5 days
- C. 7 days
- D.Cannot be determined
- E.None of these

Answer \& Explanation

Answer - C (7 days)
Explanation -
1 woman's 1 day's work $=\frac{1}{70}$

1
1 child's 1 day's work $=$ \qquad 140
$\left(5\right.$ women +10 children)'s day's work $=\frac{5}{70}+\frac{10}{140}=\frac{1}{14}+\frac{1}{14}=\frac{1}{7}$
5 women and 10 children will complete the work in 7 days.
25- A sum of money is sufficient to pay A's wages for 21 days and B's wages for 28 days. The same money is sufficient to pay the wages of both for:

- A. 12 days
- B. 13 days
- C. 14 days
- D. 15 days
- E.None of these

Answer \& Explanation

Answer - A (12 days)
Explanation -
Let total money be Rs. x.

A's 1 day's wages $=$ Rs. $\quad \frac{x}{21}$, B's 1 day's wages $=R s . \quad$| x |
| :--- |
| 28 |

$(\mathrm{A}+\mathrm{B})$'s 1 day's wages $=\mathrm{Rs} . \quad \bar{x}+\frac{x}{21}+\overline{28}=$ Rs. $\frac{x}{\overline{12}}$
Money is sufficient to pay the wages of both for 12 days.

26- A, B and C can complete a work separately in 24,36 and 48 days respectively. They started together but C left after 4 days of start and A left 3 days before the completion of the work. In how many days will the work be completed?

- A. 15 days
- B. 22 days
- C. 25 days
- D. 35 days
- E.None of these

Answer \& Explanation
Answer - A (15 days)
Explanation -
$(\mathrm{A}+\mathrm{B}+\mathrm{c})$'s 1 day's work $=\frac{1}{24}+\frac{1}{36}+\frac{1}{48}=\frac{13}{144}$
Work done by $(A+B+C)$ in 4 days $=\frac{13}{144} \times 4=\frac{13}{36}$
Work done by B in 3 days $=\frac{1}{36} \times 3=\frac{1}{12}$. Remaining work $=1-\frac{13}{36}+\frac{1}{12}=\frac{5}{9}$
$(\mathrm{A}+\mathrm{B})^{\prime}$'s 1 day's work $=\frac{1}{24}+\frac{1}{36}=\frac{5}{72}$
$5 \quad 72 \quad 5$
Now, $\frac{-}{72}$ work was done by A and B in $\quad \mathrm{x} \quad \overline{9}=8$ days.

Hence, total time taken $=(4+3+8)$ days $=15$ days.

27- A man can do a piece of work in 5 days, but with the help of his son, he can do it in 3 days. In what time can the son do it alone?

- A. 7 days
- B. 7 1/2 days
- C. 8 days
- D. 8 1/2 days
- E.None of these

Answer \& Explanation

Answer - B (7 1/2 days)
Explanation -
Son's 1 day's work $=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}$
15
The son alone can do the work in

$$
\frac{C}{2}=7 \frac{}{2}=\text { days. }
$$

28- A does half as much work as B in three-fourth of the time. If together they take 18 days to complete the work, how much time shall B take to do it?

- A. 30 days
- B. 35 days
- C. 40 days
- D. 45 days
- E.None of these

Answer \& Explanation

Answer - A (30 days)
 Explanation -

Suppose B takes x days to do the work.

$$
\begin{aligned}
& \text { A takes } 2 \times \frac{3}{4} x=\frac{3 x}{2} \text { days to do it. } \\
& \left(\mathrm{A}+\mathrm{B} \text {)'s } 1 \text { day's work }=\frac{1}{18}\right. \\
& 1 \\
& \bar{x}=\frac{2}{3 x}=\frac{1}{18} \text { or } x=30
\end{aligned}
$$

29- X and Y can do a piece of work in 20 days and 12 days respectively. X started the work alone and then after 4 days Y joined him till the completion of the work. How long did the work last?

- A. 6 days
- B. 10 days
- C. 15 days
- D. 20 days
- E.None of these

Answer \& Explanation
Answer - B (10 days)
Explanation -
Work done by X in 4 days $=\frac{1}{20} \times 4=\frac{1}{5}$.

$$
\begin{aligned}
& \text { Remaining work }=1-\underset{5}{-\frac{1}{5}}=\frac{4}{5} . \\
& (\mathrm{X}+\mathrm{Y}) \text { 's } 1 \text { day's work }=\frac{1}{20}+\frac{1}{12}=\frac{8}{60}=\frac{2}{15} .
\end{aligned}
$$

2
Now, - work is done by X and Y in 1 day. 15

4
$15 \quad 4$
So, ${ }_{5}$ work will be done by X and Y in $\mathrm{K}_{-}=6$ days.
5
25
Hence, total time taken $=(6+4)$ days $=10$ days.
$30-\mathrm{A}$ is 30% more efficient than B . How much time will they, working together, take to complete a job which A alone could have done in 23 days?

- A. 11 days
- B. 13 days
- C. 15 days
- D. 20 days
- E.None of these

Answer \& Explanation

Answer - B (13 days)
Explanation -
Ratio of times taken by A and $B=100: 130=10: 13$.
Suppose B takes x days to do the work.

Then, $10: 13:: 23: x \quad x=\frac{23 \times 13}{10} \quad x=\frac{299}{10}$.

A's 1 day's work $=\frac{1}{23}$;

B's 1 day's work $=\frac{10}{299}$.
$(\mathrm{A}+\mathrm{B})^{\prime}$'s 1 day's work $=\frac{1}{23}+\frac{10}{299}=\frac{23}{299}=\frac{1}{13}$.
Therefore, A and B together can complete the work in 13 days.

