1- Two trains are moving in opposite directions at $60 \mathrm{~km} / \mathrm{hr}$ and $90 \mathrm{~km} / \mathrm{hr}$. Their lengths are 1.10 km and 0.9 km respectively. The time taken by the slower train to cross the faster train in seconds is:

- A. 48 sec
- B. 52 sec
- C. 58 sec
- D. 66 sec
- E.None of these

Answer \& Explanation

Answer - A (48 sec)
Explanation - Relative sped $=(60+90) \mathrm{km} / \mathrm{hr}$
$=[150 \times 5 / 18] \mathrm{m} / \mathrm{sec}=[125 / 3] \mathrm{m} / \mathrm{sec}$.
Distance covered $=(1.10+0.9) \mathrm{km}=2 \mathrm{~km}=2000 \mathrm{~m}$.
Required time $=[2000 \times 3 / 125] \mathrm{sec}=48 \mathrm{sec}$.
2- Two trains 140 m and 160 m long run at the speed fo $60 \mathrm{k} / \mathrm{hr}$ and $40 \mathrm{~km} / \mathrm{hr}$ respectively in opposite directions on parallel tracks. The time (in seconds) which they take to cross each other, is:

- A. 7 sec
- B. 8.6 sec
- C. 10.8 sec
- D. 11 sec
- E.None of these

Answer \& Explanation
Answer - C (10.8)
Explanation - Relative speed $=(60+40) \mathrm{km} / \mathrm{hr}=[100 \times 5 / 18] \mathrm{m} / \mathrm{sec}$
$=[250 / 9] \mathrm{m} / \mathrm{sec}$.
Distance covered in crossing each other $=(140+160) \mathrm{m}=300 \mathrm{~m}$.
Required time $=[300 \times 9 / 250] \mathrm{sec}=54 / 5 \mathrm{sec}$
$=10.8 \mathrm{sec}$.

3- A 270 metres long train running at the speed of 120 kmph crosses another train running in opposite direction at the speed of 80 kmph in 9 seconds. What is the length of the other train?

- A. 190
- B. 200
- C. 225
- D. 230
- E.None of these

Answer \& Explanation

Answer - D (230)
Explanation - Relative speed $=(120+80) \mathrm{km} / \mathrm{hr}$
$[200 \times 5 / 18] \mathrm{m} / \mathrm{sec}=[500 / 9] \mathrm{m} / \mathrm{sec}$.
Let the length of the other tain be x metres.
Then, $x+270 / 9=500 / 9$
$\Leftrightarrow x+270=500$
$\Leftrightarrow x=230$.

4- Two trains of equal length are running on parallel lines in the same direction at 46 $\mathrm{km} / \mathrm{hr}$ and $36 \mathrm{~km} / \mathrm{hr}$. The faster train passes the slower train in 36 seconds. The length of each train is:

- A. 45
- B. 50
- C. 60
- D. 80
- E.None of these

Answer \& Explanation

Answer - B (50)
Explanation - Let the length of each tain be x metres.
Then, distance covered $=2 x$ metres.
Relaive speed $=(46-36) \mathrm{km} / \mathrm{hr}=[10 \times 5 / 18] \mathrm{m} / \mathrm{sec}=[25 / 9] \mathrm{m} / \mathrm{sec}$.
$\therefore 2 x / 36=25 / 9$
$\Leftrightarrow 2 x=100$
$\Leftrightarrow x=50$.
5- A train 125 m long passes a man, running at 5 kmph in the same direction in which the train is going, in 10 seconds. The speed of the train is:

- A. 38 km/hr
- B. $40 \mathrm{~km} / \mathrm{hr}$
- C. 44 km/hr
- D. $50 \mathrm{~km} / \mathrm{hr}$
- E.None of these

Answer \& Explanation

Answer - D (50 km/hr)
Explanation - Speed of the train relative to man $=[125 / 10] \mathrm{m} / \mathrm{sec}=[25 / 2] \mathrm{m} / \mathrm{sec}$.
$=[25 / 2 \times 18 / 5] \mathrm{km} / \mathrm{hr}=45 \mathrm{~km} / \mathrm{hr}$.
Let the speed of the train be $\times \mathrm{kmph}$.
Then, relative speed $=(x-5) \mathrm{kmph}$.
$\therefore \mathrm{x}-5=45$ or $\mathrm{X}=50 \mathrm{kmph}$.
6- A jogger running at 9 kmph alongside a railway track in 240 metres ahead of the engine of a 120 metres long train running at 45 kmph in the same direction. In how much time will the train pass the jogger?

- A. 3.6 sec
- B. 18 sec
- C. 36 sec
- D. 72 sec
- E.None of these

Answer \& Explanation
Answer - C (36 sec)
Explanation - Speed of train relative to jogger $=(45-9) \mathrm{km} / \mathrm{hr}=36 \mathrm{~km} / \mathrm{hr}$

$$
=36 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}
$$

$=10 \mathrm{~m} / \mathrm{sec}$.
Distance to be covered $=(240+120) \mathrm{m}=360 \mathrm{~m}$
360
Time taken $=\frac{-}{10} \mathrm{sec}=36 \mathrm{sec}$.

7-270 metres long train running at the speed of 120 kmph crosses another train running in opposite direction at the speed of 80 kmph in 9 seconds. What is the length of the other train?

- A. 230 m
- B. 240 m
- C. 260 m
- D. 320 m
- E.None of these

Answer \& Explanation

Answer - A (230 m)

Explanation - Relative speed $=(120+80) \mathrm{km} / \mathrm{hr}$
5
$=200 \times \underset{18}{\mathrm{~m} / \mathrm{sec}}$

$$
=\frac{500}{9} \mathrm{~m} / \mathrm{sec} .
$$

Let the length of the other train be x metres.
Then, $\underset{9}{x+270}=\frac{500}{9}$
$x+270=500$
$x=230$.
8- A goods train runs at the speed of 72 kmph and crosses a 250 m long platform in 26 seconds. What is the length of the goods train?

- A. 230 m
- B. 240 m
- C. 260 m
- D. 270 m
- E.None of these

Answer \& Explanation
Answer - D (270 m)
Explanation -
5
Speed $=72 \mathrm{x}-\mathrm{m} / \mathrm{sec}=20 \mathrm{~m} / \mathrm{sec}$.
18
Time $=26 \mathrm{sec}$.
Let the length of the train be x metres.

$$
\begin{aligned}
& \text { Then, }, \frac{x+250}{26}=20 \\
& x+250=520 \\
& x=270 .
\end{aligned}
$$

9- Two trains, each 100 m long, moving in opposite directions, cross each other in 8 seconds. If one is moving twice as fast the other, then the speed of the faster train is:

- A. 30 km/hr
- B. 45 km/hr
- C. 60 km/hr
- D. $75 \mathrm{~km} / \mathrm{hr}$
- E.None of these

Answer \& Explanation

Answer - C (60 km/hr)

Explanation - Let the speed of the slower train be $x \mathrm{~m} / \mathrm{sec}$.
Then, speed of the faster train $=2 x \mathrm{~m} / \mathrm{sec}$.
Relative speed $=(x+2 x) \mathrm{m} / \mathrm{sec}=3 x \mathrm{~m} / \mathrm{sec}$.

$$
\stackrel{(100+100)}{=} 3 x
$$

8

$$
24 x=200
$$

$$
x=\frac{25}{3} .
$$

So, speed of the faster train $=\frac{50}{3} \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& =\frac{50}{3} \times \frac{18}{5} \mathrm{~km} / \mathrm{hr} \\
& =60 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

10- Two trains 140 m and 160 m long run at the speed of $60 \mathrm{~km} / \mathrm{hr}$ and $40 \mathrm{~km} / \mathrm{hr}$ respectively in opposite directions on parallel tracks. The time (in seconds) which they take to cross each other, is:

- A. 9
- B.9.6
- C. 10
- D. 10.8
- E.None of these

Answer \& Explanation

Answer - D (10.8)
Explanation -

$$
\text { Relative speed }=(60+40) \mathrm{km} / \mathrm{hr}=100 \times \frac{5}{18} \mathrm{~m} / \mathrm{sec}=\frac{250}{9} \mathrm{~m} / \mathrm{sec} .
$$

Distance covered in crossing each other $=(140+160) m=300 m$.
Required time $=300 \times \frac{9}{250} \sec =\frac{54}{5} \sec =10.8 \mathrm{sec}$.

