1- The ratio between the length and the breadth of a rectangular park is $3: 2$. If a man cycling along the boundary of the park at the speed of $12 \mathrm{~km} / \mathrm{hr}$ completes one round in 8 minutes, then the area of the park (in sq. m) is:

- A. 15360
- B. 153600
- C. 30720
- D. 307200
- E.None of these

Answer \& Explanation

Answer - B (153600)
Explanation -
12000
Perimeter $=$ Distance covered in $8 \mathrm{~min} .=$ \qquad $\mathrm{x} 8 \mathrm{~m}=1600 \mathrm{~m}$.
60
Let length $=3 x$ metres and breadth $=2 x$ metres.
Then, $2(3 x+2 x)=1600$ or $x=160$.
Length $=480 \mathrm{~m}$ and Breadth $=320 \mathrm{~m}$.
Area $=(480 \times 320) \mathrm{m}^{2}=153600 \mathrm{~m}^{2}$.

2- An error 2% in excess is made while measuring the side of a square. The percentage of error in the calculated area of the square is:

- A. 2%
- B.2.02\%
- C. 4%
- D.4.04\%
- E.None of these

Answer \& Explanation

Answer - D (4.04\%)
Explanation - 100 cm is read as 102 cm .

$$
A_{1}=(100 \times 100) \mathrm{cm}^{2} \text { and } A_{2}(102 \times 102) \mathrm{cm}^{2} .
$$

$$
\left(A_{2}-A_{1}\right)=\left[(102)^{2}-(100)^{2}\right]
$$

$$
=(102+100) \times(102-100)
$$

$$
=404 \mathrm{~cm}^{2} .
$$

$$
\text { Percentage error }=\frac{404}{100 \times 100} \times 100 \%=4.04 \%
$$

3- The ratio between the perimeter and the breadth of a rectangle is $5: 1$. If the area of the rectangle is $216 \mathrm{sq} . \mathrm{cm}$, what is the length of the rectangle?

- A. 16 cm
- B. 18 cm
- C. 24 cm
- D.Data inadequate
- E.None of these

Answer \& Explanation
Answer - B (18 cm)
Explanation -
$2(l+b) 5$
$\bar{b}=$
$2 l+2 b=5 b$
$3 b=21$
2
$b=_l$
3

Then, Area $=216 \mathrm{~cm}^{2}$
$1 \times b=216$ 2
$l \mathrm{x} _l=216$
3
$R=324$
$I=18 \mathrm{~cm}$

4- The percentage increase in the area of a rectangle, if each of its sides is increased by 20% is:

- A. 40%
- B. 42%
- C.44\%
- D.46\%
- E.None of these

Answer \& Explanation

Answer - C (44\%)
Explanation - Let original length $=x$ metres and original breadth $=y$ metres .
Original area $=(\mathrm{ab}) \mathrm{m}^{2}$.
New length $=\frac{120}{100} a \mathrm{~m}=\frac{6}{5} b \mathrm{~m}$.

New breadth $=\frac{120}{100} b \mathrm{~m}=\underset{5}{6} b \mathrm{~m}$.

The difference between the original $a r e a=a b$ and new-area $36 / 25 \mathrm{ab}$ is
$=(36 / 25) \mathrm{ab}-\mathrm{ab}$
$=\mathrm{ab}(36 / 25-1)$
$=\mathrm{ab}(11 / 25)$ or $(11 / 25) \mathrm{ab}$
$11 \quad 1$
Increase $\%=\frac{-}{25} a b \times \underset{\text { ab }}{ } \times 100 \%=44 \%$.

5- A rectangular park 60 m long and 40 m wide has two concrete crossroads running in the middle of the park and rest of the park has been used as a lawn. If the area of the lawn is 2109 sq . m , then what is the width of the road?

- A. 2.91 m

- B. 3 m
- C. 5.82 m
- D.Data inadequate
- E.None of these

Answer \& Explanation

Answer - B (3 m)
Explanation - Area of the park $=(60 \times 40) \mathrm{m}^{2}=2400 \mathrm{~m}^{2}$.
Area of the lawn $=2109 \mathrm{~m}^{2}$.
Area of the crossroads $=(2400-2109) \mathrm{m}^{2}=291 \mathrm{~m}^{2}$.
Let the width of the road be x metres. Then,
$60 x+40 x-x^{2}=291$
$x^{2}-100 x+291=0$
$(x-97)(x-3)=0$
$x=3$.

6- The diagonal of the floor of a rectangular closet is $71 / 2$ feet. The shorter side of the closet is $41 / 2$ feet. What is the area of the closet in square feet?

- A. 5 1/4
- B. 13 1/2
- C. 27
- D. 37
- E.None of these

Answer \& Explanation
Answer - C (27)
Explanation -

$$
15 \quad 9
$$

Other side $=\left(\frac{-}{2}\right)^{2}-(-)_{2}^{2} \mathrm{ft}$

$$
\begin{aligned}
& =\frac{225}{4}-\frac{81}{4} \mathrm{ft} \\
& =\frac{144}{4} \\
& =36 \mathrm{ft} .
\end{aligned}
$$

Other side $=6 \mathrm{ft}$
Area of closet $=(6 \times 4.5) \mathrm{sq} . \mathrm{ft}=27 \mathrm{sq} . \mathrm{ft}$

7- A towel, when bleached, was found to have lost 20% of its length and 10% of its breadth. The percentage of decrease in area is:

- A. 10 \%
- B. 10.08%
- C. 20%
- D. 28 \%
- E.None of these

Answer \& Explanation

Answer - D (28 \%)
Explanation - Let original length $=\mathrm{a}$ and original breadth $=\mathrm{b}$.

$$
\begin{aligned}
& \text { Decrease in area }=a b-\frac{80}{100} \\
& \mathrm{a} \times \frac{90}{100} \\
& \mathrm{~b} \\
&=\mathrm{ab}-\frac{18}{25} a b \\
&=\frac{7}{25} \mathrm{ab} .
\end{aligned}
$$

Decrease $\%=\frac{7}{25} \stackrel{1}{2 b} \times \underset{a b}{ } \times 100 \%=28 \%$.

8- A man walked diagonally across a square lot. Approximately, what was the percent saved by not walking along the edges?

- A. 20
- B. 24
- C. 30
- D. 33
- E.None of these

Answer \& Explanation
Answer - C (30)
Explanation - Let the side of the square(ABCD) be x metres.
Then, $A B+B C=2 x$ metres.

$$
\mathrm{AC}=2 x=(1.41 x) \mathrm{m} .
$$

Saving on $2 x$ metres $=(0.59 x) \mathrm{m}$.
Saving $\%=\frac{0.59 x}{2 x} \times 100 \%=30 \%$ (approx.)

9- The diagonal of a rectangle is 41 cm and its area is 20 sq . cm . The perimeter of the rectangle must be:

- A. 9 cm
- B. 18 cm
- C. 20 cm
- D. 41 cm
- E.None of these

Answer \& Explanation
Answer - B (18 cm)
Explanation - $R+b^{2}=41$.
Also, $l b=20$.
$(I+b)^{2}=\left(R+b^{2}\right)+2 l b=41+40=81$
$(I+b)=9$.
Perimeter $=2(I+b)=18 \mathrm{~cm}$.

10- What is the least number of squares tiles required to pave the floor of a room 15 m 17 cm long and 9 m 2 cm broad?

- A. 814
- B. 820
- C. 840
- D. 844
- E.None of these

Answer \& Explanation
Answer - A (814)
Explanation - Length of largest tile $=$ H.C.F. of 1517 cm and $902 \mathrm{~cm}=41 \mathrm{~cm}$.
Area of each tile $=(41 \times 41) \mathrm{cm}^{2}$.
Required number of tiles $=\frac{1517 \times 902}{41 \times 41}=814$.

