11. Electric intensity being a vector quantity always points
along the direction of force
A. experienced by a unit positive charge
perpendicular to the direction of
C. force experienced by a uit positive charge
opposite to the direction of force
B. experienced by a unit positive
charge
D. any of above

Answer: Option A
12. Electric flux linked with a surface will be maximum when
A. the surface is held parallel to the electric field
B. the surface is held perpendicular to
C. the surface makes an angle of
C. 45?with the field
D. all of the above

Answer: Option B
13. A closed surface contains two equal and opposite charges. The net electric flux from the surface will be
A. negative
B. positive
C. zero
D. data is insufficient

Answer: Option C
14. The electric lines of force are
A. imaginary
B. physically existing every where
C. physically existing near the charges
D. depends upon case

Answer: Option A
15. Tick the correct statement
A. the electric lines of force have no physical existence
C. thev do not cross each other and
B. they expand laterally and contract longitudinally
D. all the above statements are true
group together in dielectric

Answer: Option D

16. If free space between the plates of a capacitor is replaced by a dielectric

The potential difference remains
A. constant capacittance and energy stored increases

The potential difference decreases
C. but both capacitance and energy increase

The potential difference remains
B. constant capacittance decreases and energy increases both potential difference and
D. capacitance decrease but energy increases

Answer: Option C

17. Two similar charges each of one coulomb placed in air one meter apart repel each other with a force
A. $9 \times 109 \mathrm{~N}$
B. $\quad 9.2 \times 104 \mathrm{~N}$
C. $9 \times 109 \mathrm{~N}$
D. $9 \times 107 \mathrm{~N}$

Answer: Option A
18. The variation of electric potential due to a point charge with distance is represented by the graph

Answer: Option D
19. A hollow metallic sphere of 8 cm diameter is charged with $4 \times 108 \mathrm{C}$. The potential on its surface will be
A. 900 volts
B. 9000 volts
C. 90 volts
D. zero

Answer: Option B
20. The metallic spheres A and B of radii 2 m and 4 m respectively carry the same charge 4 x 108 C. If the spheres are connected by a copper wire
A. charge will flow from A to B
C. no flow of charge will occur
B. charge will flow from B to A
D. both a and b are possible

