41- A and B can do a piece of work in 30 days, while B and C can do the same work in 24 days and C and A in 20 days. They all work together for 10 days when B and C leave. How many days more will A take to finish the work?

- **A.**18 days
- **B.**24 days
- **C.**30 days
- **D.**36 days
- E.None of these

Answer & Explanation

Answer - A (18 days)

$$2(A + B + C)$$
's 1 day's work = $\frac{1}{30} + \frac{1}{24} + \frac{1}{20} = \frac{15}{120} = \frac{1}{8}$

Therefore,
$$(A + B + C)$$
's 1 day's work =
$$\frac{1}{2 \times 8} = \frac{1}{16}$$

Work done by A, B, C in 10 days =
$$\frac{10}{16}$$
 = $\frac{5}{8}$

Remaining work =
$$1 - \frac{5}{8} = \frac{3}{8}$$

A's 1 day's work =
$$\frac{1}{16} - \frac{1}{24} = \frac{1}{48}$$

So,
$$\frac{3}{4}$$
 work will be done by A in 48 x $\frac{3}{4}$ = 18 days.

8

42- A works twice as fast as B. If B can complete a work in 12 days independently, the number of days in which A and B can together finish the work in :

- A.4 days
- B.6 days
- C.8 days
- **D.**18 days
- E.None of these

Answer & Explanation

Answer - A (4 days)

Explanation - Ratio of rates of working of A and B = 2:1.

So, ratio of times taken = 1:2.

B's 1 day's work =
$$\frac{1}{12}$$
.

A's 1 day's work =
$$\frac{1}{6}$$
; (2 times of B's work)

$$(A + B)$$
's 1 day's work = $\begin{bmatrix} 1 & 1 & 3 & 1 \\ -1 & 1 & 12 & 4 \end{bmatrix}$

So, A and B together can finish the work in 4 days.

43- Twenty women can do a work in sixteen days. Sixteen men can complete the same work in fifteen days. What is the ratio between the capacity of a man and a woman?

- **A.**3:4
- **B.**4:3
- **C.**5:3
- D.Data inadequate
- E.None of these

Answer & Explanation

Answer - **B** (4:3)

Explanation - (20 x 16) women can complete the work in 1 day.

1 woman's 1 day's work =
$$\frac{1}{320}$$
.

(16 x 15) men can complete the work in 1 day.

$$1 \text{ man's 1 day's work} = \frac{1}{240}$$

So, required ratio=
$$\frac{1}{240} \cdot \frac{1}{320}$$

$$= \frac{1}{3} \cdot \frac{1}{4}$$

= 4 : 3 (cross multiplied)

44- A, B and C can complete a piece of work in 24, 6 and 12 days respectively. Working together, they will complete the same work in:

- A.1/24 days
- **B.**3 3/7 days
- C.3 days
- D.4 days
- E.None of these

Answer & Explanation

Answer - **B** (3 3/7 days)

$$(A + B + C)$$
's 1 day's work =
$$\frac{1}{24} + \frac{1}{6} + \frac{1}{12} = \frac{7}{24}$$

So, A, B and C together will complete the job in
$$\frac{24}{7} = 3 \frac{3}{7}$$
 days.

45- A can finish a work in 24 days, B in 9 days and C in 12 days. B and C start the work but are forced to leave after 3 days. The remaining work was done by A in:

- **A.**5 days
- **B.**6 days
- **C.**10 days
- **D.**12 days
- E.None of these

Answer & Explanation

Answer - C (10 days)

Work done by B and C in 3 days =
$$7 \times 3 = 36$$

Remaining work =
$$\begin{array}{c}
7 \\
1-\\
12
\end{array} = \frac{5}{12}$$

Now,
$$\frac{1}{24}$$
 Work is done by A in 1 day.

So,
$$\frac{5}{12}$$
 work is done by A in $24 \times \frac{5}{12} = 10$ days.

46- A can do a piece of work in 10 days; B in 15 days. They work for 5 days. The rest of the work was finished by C in 2 days. If they get Rs. 1500 for the whole work, the daily wages of B and C are:

- A.Rs. 150
- B.Rs. 225
- C.Rs. 250
- D.Rs. 300
- E.None of these

Answer & Explanation

Answer - **B** (Rs. 225)

Part of the work done by A =
$$\frac{1}{10} \times 5 = \frac{1}{2}$$

Part of the work done by B =
$$\frac{1}{15} \times 5 = \frac{1}{3}$$

Part of the work done by
$$C = 1$$
 - $\frac{1}{2}$ + $\frac{1}{3}$ = $\frac{1}{6}$

A's share = Rs.
$$\frac{3}{6}$$
 x 1500 = Rs. 750, B's share = Rs. $\frac{2}{6}$ x 1500 = Rs. 500.

C's share = Rs.
$$\frac{1}{6}$$
 x 1500 = Rs. 250.

C's daily wages = Rs.
$$\frac{250}{2} = \text{Rs. } 125.$$

Daily wages of B and C = Rs. (100 + 125) = Rs. 225.

47- A can finish a work in 24 days, B in 9 days and C in 12 days. B and C start the work but are forced to leave after 3 days. The remaining work was done by A in:

- A.5 days
- **B.**6 days
- **C.**8 days
- **D.**10 days
- E.None of these

Answer & Explanation

Answer - **D** (10 days) Explanation -

$$(B + C)$$
's 1 day's work = $\begin{bmatrix} 1 & 1 & 7 \\ - & + & - & = \\ 9 & 12 & 36 \end{bmatrix}$

Work done by B and C in 3 days =
$$\begin{bmatrix} 7 & 7 \\ 36 & 12 \end{bmatrix}$$

Remaining work =
$$1 - \frac{7}{12} = \frac{5}{12}$$

So, __ work is done by A in
$$24 \times \frac{5}{12} = 10$$
 days.

48- X can do a piece of work in 40 days. He works at it for 8 days and then Y finished it in 16 days. How long will they together take to complete the work?

- **A.**13 1/3 days
- **B.**15 days
- C.20 days
- **D.**26 days
- . E.None of these

Answer & Explanation

Answer - A (13 1/3 days)

Work done by X in 8 days =
$$\frac{1}{40} \times 8 = \frac{1}{5}$$

Remaining work =
$$1$$
 $-\frac{1}{5}$ $-\frac{4}{5}$

Whole work will be done by Y in
$$16 x_{-} = 20$$
 days.

X's 1 day's work =
$$\frac{1}{40}$$
, Y's 1 day's work = $\frac{1}{20}$.

Hence, X and Y will together complete the work in
$$\begin{array}{c} 40 & 1 \\ \underline{} & = 13 \text{_days.} \\ 3 & 3 \end{array}$$

49- A and B can do a job together in 7 days. A is 1 3/4 times as efficient as B. The same job can be done by A alone in :

- **A.**9 1/3 days
- **B.**11 days
- C.12 1/4 days
- **D.**16 1/3 days
- E.None of these

Answer & Explanation

Answer - B (11 days)

Explanation -

Let A's and B's 1 day's work be 7x and 4x respectively

Then,
$$7x + 4x = \frac{1}{7}$$
 $11x = \frac{1}{7}$ $x = \frac{1}{77}$

A's 1 day's work =
$$\frac{1}{77}$$
 x 7 = $\frac{1}{11}$

Techofworld.In Techofworld.In

50- A and B together can do a piece of work in 30 days. A having worked for 16 days, B finishes the remaining work alone in 44 days. In how many days shall B finish the whole work alone?

- A.30 days
- B.40 days
- **C.**60 days
- **D.**70 days
- E.None of these

Answer & Explanation

Answer - C (60 days)

Explanation - Let A's 1 day's work = x and B's 1 day's work = y.

Then,
$$x + y =$$
 and $16x + 44y = 1$.

Solving these two equations, we get: x = and y = 60 60

B's 1 day's work =
$$\frac{1}{60}$$
.

Hence, B alone shall finish the whole work in 60 days.