21- Two trains running in opposite directions cross a man standing on the platform in 27 seconds and 17 seconds respectively and they cross each other in 23 seconds. The ratio of their speeds is:

- **A.**1:3
- B.3:4
- **C.**3:2
- D.Data inadequate
- E.None of these

Answer & Explanation

Answer - **C** (3:2)

Explanation - Let the speeds of the two trains be x m/sec and y m/sec respectively.

Then, length of the first train = 27x metres,

and length of the second train = 17y metres.

$$\frac{27x + 17y}{x + y} = 23$$

$$27x + 17y = 23x + 23y$$

$$4x = 6y$$

$$x = 3$$

22- A train passes a station platform in 36 seconds and a man standing on the platform in 20 seconds. If the speed of the train is 54 km/hr, what is the length of the platform?

- **A.**120 m
- **B.**240 m
- C.300 m
- D.Data inadequate
- E.None of these

Answer & Explanation

Answer - **B** (240 m)

Explanation -

Speed =
$$54 \text{ x}$$
 m/sec = 15 m/sec .

Length of the train = (15×20) m = 300 m.

Let the length of the platform be x metres.

$$x + 300$$

Then,___= 15

$$x + 300 = 540$$

$$x = 240 \text{ m}.$$

<u>Techofworld.In</u> <u>Techofworld.In</u>

23- A train 240 m long passes a pole in 24 seconds. How long will it take to pass a platform 650 m long?

- A.65 sec
- B.89 sec
- **C.**100 sec
- **D.**150 sec
- E.None of these

Answer & Explanation

Answer - B (89 sec)

Explanation -

Speed =
$$\frac{240}{\text{m/sec}} = 10 \text{ m/sec}.$$

Required time =
$$\frac{240 + 650}{10}$$
 sec = 89 sec.

24- Two trains of equal length are running on parallel lines in the same direction at 46 km/hr and 36 km/hr. The faster train passes the slower train in 36 seconds. The length of each train is:

- **A.**50 m
- **B.**72 m
- C.80 m
- **D.**82 m
- E.None of these

Answer & Explanation

Answer - A (50 m)

Explanation - Let the length of each train be *x* metres.

Then, distance covered = 2x metres.

Relative speed = (46 - 36) km/hr

$$5 = 10 \text{ x} \text{m/sec}$$

$$18$$

$$= \frac{25}{9}$$
m/sec

$$\frac{2x}{36} = \frac{25}{9}$$

$$2x = 100$$

$$x = 50.$$

<u>Techofworld.In</u> <u>Techofworld.In</u>

25- A train 360 m long is running at a speed of 45 km/hr. In what time will it pass a bridge 140 m long?

- A.40 sec
- B.42 sec
- C.45 sec
- D.48 sec
- E.None of these

Answer & Explanation

Answer - A (40 sec) Explanation -

Formula for converting from km/hr to m/s: X km/hr = X x m/s.

Therefore, Speed = $45 \times \frac{5}{18} \times \frac{25}{2}$

Total distance to be covered = (360 + 140) m = 500 m.

Distance

Formula for finding Time = Speed

Required time = $\frac{500 \times 2}{25}$ sec= 40 sec.

26- Two trains are moving in opposite directions @ 60 km/hr and 90 km/hr. Their lengths are 1.10 km and 0.9 km respectively. The time taken by the slower train to cross the faster train in seconds is:

- A.36 sec
- B.45 sec
- C.48 sec
- D.49 sec
- E.None of these

<u>Techofworld.In</u> <u>Techofworld.In</u>

Answer & Explanation

Answer - C (48 sec)

Explanation - Relative speed = (60+90) km/hr

$$= 150 \text{ x} \text{m/sec}$$

$$= 18$$

$$= \frac{125}{\text{m/sec.}}$$

Distance covered = (1.10 + 0.9) km = 2 km = 2000 m.

Required time = 2000 x3sec = 48 se